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• Integration of analytical materials methods 

with the design engineering process has 
significant payoff 
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It isn’t dislocation dynamics

• Identify critical process inputs
• Exploit experimentation
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• Efficient computation and parametric capability• Efficient computation and parametric capability

Case Study Heat Treat Forging Part Forge Wt Part Wt Burst Speed Comments
1 Constant Variable Variable -18% -15% +6% Current State of the Art
2 Variable Variable Constant -11% n/a +12% Final Part shape constrained

3 Variable Variable Variable -21% -19% +19% Full impact of tool

Cost Benefit System Benefits
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THE DESIGNERS LANGUAGETHE DESIGNERS LANGUAGE

• Surface & subsurface
• Time-temperature effects
• Damage accumulation
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• Surface residual stress
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• Time-temperature effects
• Damage accumulation
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ACCURACY WILL IMPROVEACCURACY WILL IMPROVE

• Emphasis on developing viable physically 
based models
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FOCUSED EXPERIMENTATIONFOCUSED EXPERIMENTATION
• Must measure key features …not traditionally done

New  experimentation

• Model/data fusion
Enhances distribution convergence
Significantly improves estimates & captures evolving confidence
Can handle reduced accuracy models
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RESEARCH  FOCUS AREASRESEARCH  FOCUS AREAS
• Material behavior models described in designer 

relevant parameters
stress,strain,time,temperature
ADDRESS CONCEPTUAL DESIGN STAGE

• Unified constitutive damage prediction approach 
capturing

evolution of local damage accumulation
coupling of damage mechanisms

• Computational & data transfer efficiency
• Definition of deterministic & tunable parameters

knowledge of sources of error & uncertainty

• Establishing range of applicability
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